Potential-induced degradation was firstly described as a power loss mechanism occurring for Sunpower modules operated at high positive potential against the ground [1]. It was called “the surface polarization effect” and was explained by an accumulation of negative charges on top of the silicon nitride layer at the front surface of the back-contact-back-junction n-type solar cells and found to be reversible [1]. During the following years the universal term potential-induced degradation was shaped which includes above described phenomena as well as power degradations observed for modules made from p-type cells of different architecture [2]. PID is not yet explained satisfactorily. In [3], the power drop accompanied by PID is divided into two categories. Both are reversible and both occur after applying a high voltage stress (positive or negative potential) between solar cell and ground; one is PID-s which results in a massive cell shunting; the other one is PID-p related to a degradation of the front surface passivation. In this study we investigate encapsulated n-type IBC solar cells featuring a p⁺ front floating emitter (FFE) in respect to their behavior towards high voltage stress. The FFE is capped by a silicon oxide, silicon nitride stack acting as anti-reflective coating and passivation layer. In contrary to the IBC cells with p⁺ front surface field examined in [1,3], our encapsulated IBC cells with FFE degrade while applying a negative potential against the ground.

Module assembly

- **glass:** standard 3.2 mm solar glass
- **backsheet:** white, transparent or black Tedlar backsheet
- **encapsulation material:** commercially available EVA or alternative material
- **cells:** p-type IBC solar cells with p⁺ front floating emitter (FFE) and p-type reference cells (Al BSF)

Assembly process

contacting: IBC cells by ECA gluing of bare Cu ribbon; reference cells by soldering of SnPbAg coated ribbon

lamination process identical for all modules for one encapsulation material, peak temperature differs by 10 K depending on the encapsulation material

PID test conditions

Test conditions

- **voltage supply:** ±1000V
- **humidity:** 5 % or 55 % ± 5 %
- **temperature:** 25 to 65 °C

Test procedure

- **initial characterisation:** IV, SunsVoc, EL
- **module placed face down on Al foil covered metal plate**
- **voltage applied**
- **final characterisation:** IV, SunsVoc, EL

PID test conditions

- PID and regeneration is reversible and repeatable
- magnitude of the power drop in same range
- degradation rate significantly shorter for condition II → used for all further tests

PID test for different encapsulants

- **PID and regeneration observed for all encapsulation materials**
- **extent of power drop different for all materials but cannot be related to volume resistivity of encapsulant**
- **results are reproducible for EVA but not for M1**
- **different degradation time?!**

PID – origin of power drop

EL records of initial state (a), degraded state (b) and degraded state (c)

Picture b shows homogenous decrease of EL signal → increase in radiative recombination in the degraded state

→ PID for IBC cells with FFE due to degradation of front surface passivation as proposed in [3]?!

front vs. rear power drop after PID

bifacial IBC modules show lower relative power drop for rear side illumination

→ PID for IBC with FFE is a front side effect

Acknowledgements

The authors want to thank the European Union for funding parts of this work in the frame of the Ecuador project “modernday” (ET17232) and the project HERCULES which has received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant No 606689.

References

